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Abstract—Besides automated controllers, the 

information flow among vehicles can significantly affect 

the dynamics of a platoon. This paper studies the 

influence of information flow topology on the closed-loop 

stability of homogeneous vehicular platoon moving in a 

rigid formation. A linearized vehicle longitudinal 

dynamic model is derived using the exact feedback 

linearization technique, which accommodates the inertial 

delay of powertrain dynamics. Directed graphs are 

adopted to describe different types of allowable 

information flow interconnecting vehicles, including both 

radar-based sensors and V2V communications. Under 

linear feedback controllers, a unified closed-loop stability 

theorem is proved by using the algebraic graph theory 

and Routh–Hurwitz stability criterion. The theorem 

explicitly establishes the stabilization threshold of linear 

controller gains for platoons with a large class of different 

information flow topologies. Numerical simulations are 

used to illustrate the results. 

I. INTRODUCTION 

Platooning of road vehicles provides a promising solution 
to several critical issues of today’s road transportation 
systems due to  its potential to significantly increase highway 
capacity, enhance safety, and reduce fuel consumption, as 
well as CO2 emission [1]. The objective of platoon control is 
to ensure that all vehicles in a platoon move at the same speed 
while maintaining a desired formation geometry, which is 
specified by a desired inter-vehicle spacing policy. Control 
design of a platoon has a long history that dates back to the 
mid-sixties of the last century [2]. It has recently attracted 
extensive research interests, see [3-8] and the references 
therein.  

From the viewpoint of control, a platoon system can be 
considered as a combination of vehicle longitudinal dynamics, 
information exchange flow, decentralized controllers and 
inter-vehicle spacing policies [4][5][7]. The vehicle 
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longitudinal dynamics depicts the behavior of each vehicle in 
longitudinal direction. The platoon is said to be 
“homogeneous” if all vehicles have identical dynamics; 
otherwise it is called “heterogeneous” [8]. The information 
exchange flow defines how the vehicles in a platoon 
exchange information with each other, including the 
exchanged information and information flow topologies 
among vehicles. Decentralized controllers implement specific 
feedback control laws for each vehicle. Most common control 
laws in the literature are linear, for comprehensive results on 
theoretical analysis and design methods, and convenience in 
hardware implementation [5][8]. The available information to 
each controller is often limited to a neighboring region 
because of the range limitation of sensing and communication 
systems. As a result, controllers use only local information to 
achieve a global performance for the platoon. The spacing 
policy sets rules of the desired distance between two adjacent 
vehicles and further dictates the desired formation geometry 
for the platoon. Here, we focus on a homogenous vehicle 
platoon with rigid formation and linear feedback controllers, 
as used by Seiler [7], Barooah [9], and Yadlapalli [10]. 

The information flow topology applied in a platoon is 
closely related to the way a vehicle acquires the information 
of its surrounding vehicles. Early-stage platoons are mainly 
radar-based without widely using the inter-vehicle 
communications. This means that a vehicle can only obtain 
the information of its nearest neighbors, i.e. the front and 
back vehicles [5][11][12]. Under the radar-based sensing 
framework, the commonly used information flow topologies 
include the predecessor following type, the 
predecessor-leader following type, and the bidirectional type 
[3][7][11-13]. Note that the predecessor-leader following 
type needs a leader with information broadcasting functions. 
Their relationship with string stability was studied by Darbha 
and Hedrick [4][15], Seiler [7], and Khatir [14] etc. Darbha et 
al. pointed out that under the constant-distance policy, a 
predecessor following-type platoon with identical linear 
controllers cannot guarantee string stability because its 
associated denominator polynomial has at least an instability 
root [4]. Seiler et al. showed that there was an essential 
limitation with localized linear controllers using the constant 
distance policy and predecessor following type since small 
spacing errors acting on one vehicle can be amplified along 
the vehicle string due to a complementary sensitivity integral 
constraint [7]. Four major approaches have been proposed to 
improve string stability of a platoon. One approach is to use 
non-identical controllers to achieve bounded stability, but at 
the expense that the controller gains must increase linearly 
with respect to the platoon scale [14]. The second approach is 
to broadcast the leader information to every following vehicle, 
resulting in the aforementioned predecessor-leader following 
topology [4]. This topology inevitably introduces certain time 

Yang Zheng, Shengbo Eben Li, Jianqiang Wang, Le Yi Wang, Fellow, IEEE and Keqiang Li 

 Influence of Information Flow Topology on Closed-loop Stability of 

Vehicle Platoon with Rigid Formation* 

2014 IEEE 17th International Conference on
Intelligent Transportation Systems (ITSC)
October 8-11, 2014. Qingdao, China

978-1-4799-6077-4/14/$31.00 ©2014 IEEE 2094



  

delays because it needs to transmit information from the 
leader to all the following vehicles. The third approach is to 
relax the formation rigidity of a platoon by using the constant 
time headway policy instead of the constant distance policy 
[15][16]. The last approach is to extend the information flow 
topology to the bidirectional type [5][7][12][17-20]. In this 
approach, two radars are installed on each vehicle, front and 
back, to detect its adjacent two vehicles. The controller then 
can use the information of both its preceding vehicle and 
following vehicle in its control strategy.  

Although extensive research has been conducted on 
radar-based topologies, more information flow topologies 
have emerged with the rapid deployment of 
vehicle-to-vehicle (V2V) communications such as DSRC, 
VANET, and MANET [21]. V2V communications generate 
various information flow topologies, including the 
two-predecessors following type, two-predecessor-leader 
following type and 𝕜-predecessors following type, etc. [22]. 
A few studies have been conducted to examine their influence 
on platoon performance, including stability and scalability. 
For example, Yadlapalli et al. pointed out that at least one 
vehicle should communicate to a large number of other 
vehicles if the spacing errors in the platoon need to be 
guaranteed insensitive to the platoon size [10]. Darbha and 
Pagilla investigated the limitations of employing undirected 
information flow to maintain a rigid formation and indicated 
that there was a critical size of platoon scale beyond which 
the motion would lose stability [23]. Fax et al. used the 
eigenvalues of the Laplacian matrix to determine the 
formation stability and proved that formation stability could 
be decomposed into two components: i.e. stability of 
information flow for the given graph and stability of 
individual vehicles for the given controller [24].  

This paper further studies the influence of different 
information flow topologies on the closed-loop stability of a 
platoon of homogenous vehicles moving in a rigid formation. 
The main contribution of this paper is to derive explicitly a 
unified closed-loop stability theorem by using the algebraic 
graph theory and Routh–Hurwitz stability criterion. The 
stability theorem is suitable for a large class of information 
flow topologies, either radar-based or communication-based. 
The theorem is actually an extension of the main result in 
Ghasemi et al.[17][18]. The main result in [17] and [18] was 
derived from another approach, called partial differential 
equation approximation, but its application is limited to 
bidirectional topologies and bidirectional–leader topologies. 
The remainder of this paper is organized as follows: Section 
II introduces the problem of platoon control, including 
graph-based modeling of different types of information flow 
topologies. Section III presents the closed-loop stability 
theorem for homogeneous platoons under different 
information flow topologies. Numerical simulations are 
shown in Section IV. Section V is for concluding remarks. 

II. PROBLEM STATEMENT  

The platoon has 𝑁 + 1  vehicles, shown in Fig. 1, 
including a leading vehicle (noted as the leader) and 𝑁 
following vehicles (noted as followers). The platoon runs on a 
flat road, and can have different information flow topologies, 
either radar-based or communication-based. Fig. 1 shows six 
kinds of commonly used topologies, including:  

(1) Predecessor following topology (PF);  
(2) Predecessor-leader following topology (PLF);  
(3) Bidirectional topology (BD);  
(4) Bidirectional-leader topology (BDL);  
(5) Two predecessors following topology (TPF);  
(6) Two predecessor-leader following topology (TPLF). 

For simplicity, many other topologies are not considered 
here, but they all can be analyzed using similar approaches. 
Note that the exchanged information can contain all the 
subjected vehicle’s position, velocity, and acceleration or 
some of them. 
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Figure 1.  Typical Information Flow Topologies for Platoon. (a) PF; (b) PLF; 

(c) BD; (d) BDL; (e) TPF; (f) TPLF 

A. Model for Vehicle Longitudinal Dynamics 

A platoon can be viewed as a collection of nodes, i.e. 
vehicles. For each vehicle, its longitudinal dynamics include 
the engine, drive line, brake system, aerodynamics drag, tire 
friction, rolling resistance, and gravitational force, etc. Some 
reasonable assumptions should be used to obtain a concise 
model for control [16][19][25-27]: 

(1) The tire longitudinal slip is negligible, and the 

powertrain dynamics are lumped into a first-order 

inertial transfer function; 

(2) The vehicle body is considered to be rigid and 

symmetric; 

(3) The influence of pitch and yaw motions is neglected; 

(4) The driving and braking torques are controllable 

inputs.  

The vehicle longitudinal dynamics are simplified, but still 
nonlinear, as follows:  

{

𝑠̇𝑖(𝑡) = 𝑣𝑖(𝑡)

𝑣̇𝑖(𝑡) =
1

𝑚𝑖,𝑣𝑒ℎ
(𝜂𝑇,𝑖

𝑇𝑖(𝑡)

𝑅𝑖
− 𝐶𝐴,𝑖𝑣𝑖

2 − 𝑚𝑖,𝑣𝑒ℎ𝑔𝑓)

𝜏𝑖𝑇̇𝑖(𝑡) + 𝑇𝑖(𝑡) = 𝑇𝑖,𝑑𝑒𝑠(𝑡)

, 

𝑖 = 1,2 ⋯ , 𝑁 

(1) 
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where 𝑠𝑖(𝑡), 𝑣𝑖(𝑡)denote the position and velocity of vehicle i, 
𝑚𝑖,𝑣𝑒ℎ  is the vehicle mass, 𝐶𝐴,𝑖 is the lumped aerodynamic 

drag coefficient, 𝑔 is the acceleration due to gravity, 𝑓 is the 
coefficient of rolling resistance, 𝑇𝑖(𝑡)  denotes the actual 
driving/braking torque, 𝑇𝑖,𝑑𝑒𝑠(𝑡)  is the desired 

driving/braking torque, 𝜏𝑖  is the inertial delay of vehicle 
longitudinal dynamics, 𝑅𝑖 denotes the tire radius and 𝜂𝑇,𝑖 is 

the mechanical efficiency of driveline. The position and 
velocity of the leading vehicle are denoted by 𝑠0(𝑡) and 𝑣0(𝑡), 
respectively. 

The exact feedback linearization technique is used to 
convert the nonlinear model into a linear one for controller 
design. The same technique has been widely used before 
[4][5][12][17] and [18]. The feedback linearization law is 

𝑇𝑖,𝑑𝑒𝑠(𝑡) =
1

𝜂𝑇,𝑖
(𝐶𝐴,𝑖𝑣𝑖(2𝜏𝑖𝑣̇𝑖 + 𝑣𝑖) + 𝑚𝑖,𝑣𝑒ℎ𝑔𝑓 +

                     𝑚𝑖,𝑣𝑒ℎ𝑢𝑖)𝑅𝑖, 
(2) 

where 𝑢𝑖 is the new input signal after linearization. Then, we 
obtain a linear model for vehicle longitudinal dynamics 

𝜏𝑖𝑎̇𝑖(𝑡) + 𝑎𝑖(𝑡) = 𝑢𝑖(𝑡), (3) 

where 𝑎𝑖(𝑡) = 𝑣̇𝑖(𝑡) denotes the acceleration of vehicle i,. 

For platoon control, a 3rd-order state space model is 
derived for each vehicle: 

𝑥̇𝑖(𝑡) = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢𝑖(𝑡), (4) 

where 

 𝑥𝑖(𝑡) = [

𝑠𝑖

𝑣𝑖

𝑎𝑖

] , 𝐴𝑖 = [

0 1 0
0 0 1

0 0 −
1

𝜏𝑖

] , 𝐵𝑖 = [

0
0
1

𝜏𝑖

] .  

B. Model for Information Flow 

The information flow topology describes the information 
used by each local controller and has significant influence on 
the collective behavior of the platoon. Moreover, some 
properties (e.g. stability and scalability) are not only related to 
decentralized controllers, but also depend on the information 
flow topology [7][10][23] . Here, directed graphs are adopted 
to develop a unified model for allowable information flow 
that interconnect vehicles in a platoon, including all 
aforementioned topologies. 

The platoon includes 𝑁  followers and 1 leader. The 
information flow among followers is modeled by a directed 
graph topology 𝐺 = {𝑉, 𝐸} with 𝑁  nodes  𝑉 =
{𝛼1, 𝛼2, … , 𝛼𝑁} , and a set of edges  𝐸 = 𝑉 × 𝑉 . The node 
𝛼𝑖 represents the i-th vehicle in a platoon whose dynamics is 
described by (4), and each edge represents a directional 
information exchange between two vehicles. To model the 
information flow from the leader to followers, we define an 

augmented graph as  𝐺̃ = {𝑉̃, 𝐸̃} , where 𝑉̃ =
{𝛼0, 𝛼2, … , 𝛼𝑁} is the node set including both the leader and 
followers. The properties of information flow modeled by the 

directed graphs  𝐺 and  𝐺̃  can be represented by three 
matrixes:  

(1) Adjacent matrix 𝑀;  
(2) Laplacian matrix 𝐿;  
(3) Pining matrix 𝑃.  

The method that uses matrices to study graphs is known as 
algebraic graph theory [24][28]. The adjacent matrix 

associated with graph 𝐺 is defined as  𝑀 = [𝑚𝑖𝑗] ∈ ℝ𝑁×𝑁 

with each entry defined as 

{
𝑚𝑖𝑗 = 1,     𝑖𝑓  {𝛼𝑗 , 𝛼𝑖} ∈ 𝐸

𝑚𝑖𝑗 = 0,     𝑖𝑓  {𝛼𝑗 , 𝛼𝑖} ∉ 𝐸
 , (5) 

where {𝛼𝑗 , 𝛼𝑖} ∈ 𝐸  means there is a directional edge from 

vehicle j to vehicle i, i.e. vehicle i can obtain the information 
on vehicle j. It is assumed that there is no self-loop, i.e. 𝑚𝑖𝑖 =
0. The Laplacian matrix 𝐿 = [𝑙𝑖𝑗] ∈ ℝ𝑁×𝑁  associated with 

graph 𝐺 is defined as: 

𝑙𝑖𝑗 = {
−𝑚𝑖𝑗        ,    𝑖 ≠ 𝑗

∑ 𝑚𝑖𝑘
𝑁
𝑘=1 ,   𝑖 = 𝑗

. (6) 

The pinning matrix 𝑃  associated with the augmented 

graph 𝐺̃ represents the information flow between the leader 
and followers, defined as  

𝑃 = 𝑑𝑖𝑎𝑔{𝑝1, 𝑝2, … , 𝑝𝑁}. (7) 

where  𝑝𝑖 = 1 if edge  {𝛼0, 𝛼𝑖} ∈ 𝐸̃ ;  𝑝𝑖 = 0 otherwise. The 

expression {𝛼0, 𝛼𝑖} ∈ 𝐸̃  means that vehicle i can receive 
information from the leader. The weight  𝑝𝑖 has been called 
pinning gains in the field of complex networks [29].  If  𝑝𝑖 =
1, vehicle i is said to be pinned to the leading vehicle.  

Several definitions associated with graph topology 

 𝐺̃ should be stated for completeness [28]: 

1) Directed path. A directed path of length 𝜁 + 1 from 
node 𝛼𝑖  to node 𝛼𝑗 is an ordered set of distinct nodes 

{𝛼𝑖 , 𝛼𝑖1
, … , 𝛼𝑖𝜁

, 𝛼𝑗} such that {𝛼𝑖 , 𝛼𝑖1
} ∈ 𝐸̃, {𝛼𝑖𝜁

, 𝛼𝑗} ∈ 𝐸̃  and 

{𝛼𝑖𝑘
, 𝛼𝑖𝑘+1

} ∈ 𝐸̃ for all 𝑘 ∈ {1,2, … , 𝜁 − 1} and 𝜁 < 𝑁.  

2) Spanning tree. A spanning tree is a tree formed by 
some or all the edges of graph that connect all the nodes of the 

graph. The graph 𝐺̃ is said to have a spanning tree if a subset 
of the edges forms a spanning tree. 

3) Neighbor set. Vehicle j is said to be a neighbor of 
vehicle i if  𝑚𝑖𝑗 = 1 , which means vehicle i can obtain 

information from vehicle j by V2V communication or by 
radar-based detection.  The neighbor set of vehicle i is 

denoted by ℕ𝑖 = {𝑗|𝑚𝑖𝑗 = 1}. 

Here, it is assumed that the augmented graph 𝐺̃ contains 
at least one spanning tree rooting from the leader [30]. In 
other words, there exists a directed path (not necessarily 
unique) from the leader to every following vehicle, which 
implies that every follower can obtain the leader information 
directly or indirectly. It is obvious that all the information 
flow topologies shown in Fig. 1 satisfy the assumption of 
containing a spanning tree.  

C. Formation of Closed-Loop Platoon Dynamics 

In engineering practice, both vehicle dynamics and 
platoon controllers can be different from each other, which 
imply that the platoon is heterogeneous. However, a platoon 
is often formed with the same-type vehicles, e.g. either trucks 
or passenger vehicles. In such cases, vehicle dynamics are 
close to each other, i.e. 𝐴𝑖 = 𝐴, 𝐵𝑖 = 𝐵 (𝑖 = 1,2, ⋯ , 𝑁), and 
their controllers are designed to be identical. Therefore, it is 
assumed that the platoon is homogeneous in our study, as in 
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[7] [9] and [10]. The leading vehicle is considered to be of 
constant-velocity type, i.e. 𝑠0 = 𝑣0𝑡. The objective of platoon 
control is to track the speed of the leading vehicle while 
maintaining a rigid formation governed by the constant 
distance policy between any two consecutive vehicles, i.e.  

{
𝑣𝑖(𝑡) = 𝑣0(𝑡)

𝑠𝑖−1(𝑡) − 𝑠𝑖(𝑡) = 𝑑𝑖−1,𝑖
, 𝑖 = 1,2, ⋯ 𝑁. (8) 

where 𝑑𝑖−1,𝑖 is the desired constant spacing between vehicle 

i-1 and vehicle i. There are two major spacing policies for 
vehicular platoons: the constant distance (CD) policy and 
constant time headway (CTH) policy [3][15]. In the CD 
policy, the desired distance between two consecutive vehicles 
is independent of vehicle velocity, which can lead to a very 
high traffic capacity. For the CTH policy, the desired 
inter-vehicle range varies with vehicle velocity, which 
accords with driver behaviors to some extent but limits the 
achievable traffic capacity. Here, we only consider the CD 
policy, which means that the vehicles are controlled to move 
in a rigid formation while following a leading vehicle. Note 
that 𝑑𝑖−1,𝑖 contains the length of the vehicle body.  

The controllers are distributed in each vehicle, and each 
controller can only use its neighborhood information 
specified by the neighbor set ℕ𝑖. The linear control law of 
each vehicle is: 

𝑢𝑖(𝑡) = − ∑ [𝑘1(𝑠𝑖 − 𝑠𝑗 − 𝑑𝑖,𝑗) + 𝑘2(𝑣𝑖 − 𝑣𝑗) +𝑗∈ℕ𝑖

      𝑘3(𝑎𝑖 − 𝑎𝑗)]. 
(9) 

where 𝑘#  ( # = 1,2,3 ) is the control gain of the linear 
controller. The desired trajectory of the i-th vehicle is 

𝑠𝑖
∗ = 𝑠0 − 𝑑0,𝑖 = 𝑠0 − ∑ 𝑑𝑗,𝑗+1

𝑖−1
𝑗=0 . (10) 

For convenience, we define three new tracking errors 𝑠̃𝑖, 
𝑣̃𝑖  and 𝑎̃𝑖 

{

𝑠̃𝑖 = 𝑠𝑖 − 𝑠𝑖
∗

𝑣̃𝑖 = 𝑣𝑖 − 𝑠̇𝑖
∗ = 𝑣𝑖 − 𝑣0

𝑎̃𝑖 = 𝑎𝑖 − 𝑠̈𝑖
∗ = 𝑎𝑖

. (11) 

For each vehicle, we can lump its tracking error with 
neighborhood vehicles specified by ℕ𝑖 . The lumped tracking 
error is 

𝜀𝑖 = ∑ (𝑥̃𝑖 − 𝑥̃𝑗)𝑗∈ℕ𝑖
. (12) 

where 𝑥̃𝑖 = [𝑠̃𝑖 , 𝑣̃𝑖 , 𝑎̃𝑖]. Substituting (12) into (9), the control 
law is rewritten into a compact form: 

𝑢𝑖(𝑡) = −𝑘𝑇𝜀𝑖(𝑡), (13) 

where 𝑘 = [𝑘1, 𝑘2, 𝑘3]𝑇. Then, the closed-loop dynamics of 
vehicle i becomes 

 𝑥̇̃𝑖 = 𝐴𝑥̃𝑖 − 𝐵𝑘𝑇𝜀𝑖(𝑡)                                                        

        = 𝐴𝑥̃𝑖 −  𝐵𝑘𝑇  [∑ 𝑚𝑖𝑗(𝑥̃𝑖 − 𝑥̃𝑗)𝑁
𝑗=1 + 𝑝𝑖(𝑥̃𝑖 − 𝑥̃0)]. (14) 

For the closed-loop dynamics of the homogeneous 
platoon, we define the collective states of all vehicles as 

𝑋 = [𝑥̃1, 𝑥̃2, ⋯ , 𝑥̃𝑁]𝑇. (15) 

Hence, the unified overall close-loop dynamics of the 
platoon interconnected by a given information exchange 
topology are written in the following compact form 

𝑋̇ = {𝐼𝑁 ⊗ 𝐴 − (𝐿 + 𝑃) ⊗ 𝐵𝑘𝑇}𝑋. (16) 

where 𝐼𝑁  is the identity matrix and symbol ⊗  is the 
Kronecker product. The overall closed-loop system matrix is  

𝐴𝑐 = 𝐼𝑁 ⊗ 𝐴 − (𝐿 + 𝑃) ⊗ 𝐵𝑘𝑇. (17) 

From (16), it is clear that the platoon dynamics are a 
function of vehicle longitudinal dynamics (noted by 𝐴, 𝐵), the 
information flow topologies (noted by matrix  𝐿 + 𝑃 ), 
decentralized feedback control law (noted by controller 
gain 𝑘𝑇) and the spacing policy (noted by 𝑑𝑖−1,𝑖). The overall 

closed-loop system matrix  𝐴𝑐 , shown in (17), reflects the 
local vehicle closed-loop matrix 𝐴 − 𝐵𝑘𝑇 as modified on the 
information flow topology  𝐿 + 𝑃 . Therefore, the platoon 
stability depends on not only its decentralized controllers but 
also the information flow topologies. Moreover, the 
information flow can cast fundamental limitation for certain 
platoon properties, i.e. stability and scalability. In Section III, 
the stability under different information flow topologies will 
be analyzed based on (16) through the algebraic graph theory 
and Routh–Hurwitz stability criterion. 

III. CLOSED LOOP STABILITY OF PLATOON WITH DIFFERENT 

INFORMATION FLOW TOPOLOGIES 

This section focuses on the stability analysis of 
homogeneous platoons in a rigid formation. It should be 
noted that there are two kinds of stability for platoons, i.e. 

(1) Closed-loop stability, which is measured by the real 
part of the least stable eigenvalue of the closed-loop 
matrix 𝐴𝑐.  

(2) String stability, which is to guarantee the spacing error 
between consecutive vehicles do not amplify along the 
vehicle string [4][7].  

This paper only considers the closed-loop stability under 
different information topologies and leaves the string stability 
for future discussion. Before presenting the main result on 
closed-loop stability, we need the following Lemmas. 

Lemma 1. [31] Let a matrix 𝑄 =  [𝑞𝑖𝑗] ∈ 𝑅𝑛×𝑛. Then all the 

eigenvalues of 𝑄 are located in the union of the n disks 

⋃ {𝜆 ∈ ℂ||𝜆 − 𝑞𝑖𝑖| ≤ ∑ |𝑞𝑖𝑗|𝑛
𝑗=1,𝑗≠𝑖 }𝑛

𝑖=1 . 

Lemma 2. [32] Let a matrix 𝑄 =  [𝑞𝑖𝑗] ∈ 𝑅𝑛×𝑛 and  

𝐽 = {𝑖 ∈ {1,2, ⋯ , 𝑛}||𝑞𝑖𝑖| > ∑ |𝑞𝑖𝑗|𝑛
𝑗=1,𝑗≠𝑖 } ≠ ∅. 

If for each 𝑖 ∉ 𝐽, there is a sequence of nonzero elements of Q 

of the form {𝑞𝑖𝑖1
, 𝑞𝑖1𝑖2

, ⋯ , 𝑞𝑖𝑟𝑗} with 𝑗 ∈ 𝐽 , then Q is 

nonsingular.  

Lemma 3. [24] Let 𝜆𝑖 , 𝑖 = 1,2, … , 𝑁be the eigenvalues of 𝐿 +
𝑃 , which may or may not be distinct, Platoon (16) is 
asymptotically stable if and only if all  

𝐴 − 𝜆𝑖𝐵𝑘𝑇 , 𝑖 = 1,2, ⋯ , 𝑁 (18) 
 are asymptotically stable.  

Lemma 1 is the well-known Geršgorin Disk Criterion. 
The main result of this paper is stated as follows. 

Theorem 1. Consider the homogeneous platoon with linear 
controllers given by (16):  
(1.1) All the eigenvalues of 𝐿 + 𝑃 are located in the open 

right-half plane, i.e. 𝑅𝑒(𝜆𝑖(𝐿 + 𝑃 )) > 0, 𝑖 = 1,2, … , 𝑁, 

when graph 𝐺̃ contains a spanning tree. 
(1.2) All the eigenvalues of 𝐿 + 𝑃 are real, i.e. 𝜆𝑖(𝐿 + 𝑃 ) =

𝑅𝑒(𝜆𝑖(𝐿 + 𝑃 )), 𝑖 = 1,2, … , 𝑁, if graph 𝐺̃ satisfies one 
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of the following conditions, no matter how many 
followers are pinned to the leader:  
a) Followers in a platoon are of “look-ahead” type, i.e. 

each following vehicle can obtain the information of 
its “𝕜” preceding vehicles. 

b) Followers in a platoon are of symmetric “look-ahead 
& look-back” type, i.e. each following vehicle has 
the information of its both “𝕜” preceding vehicles 
and “𝕜” succeeding vehicles. 

c) Information flow among followers in a platoon is 
undirected, i.e. 𝑗 ∈ ℕ𝑖 ⇔ 𝑖 ∈ ℕ𝑗.  

(1.3) If graph 𝐺̃ satisfies conditions (1.1) and (1.2), platoon 
(16) is asymptotically stable if and only if 

{

𝑘1 > 0

𝑘2 > 𝑘1𝜏 min(𝜆𝑖𝑘3 + 1)⁄

𝑘3 > − 1 max(𝜆𝑖)⁄
. (19) 

Proof: From the definition of Laplacian matrix 𝐿 in (6), 
we have 

{
∑ 𝑙𝑖𝑗 = 0𝑁

𝑗=1

|𝑙𝑖𝑖| = ∑ |𝑙𝑖𝑗|𝑁
𝑗=1,𝑗≠𝑖 ≥ 0

. (20) 

Considering the definition of pinning matrix 𝑃, we have 
𝑝𝑖 ≥ 0  and there is at least one vehicle that can obtain 

information from the leader because 𝐺̃  at least contains a 
spanning tree. This means that there is at least one node 𝑟 
such that 𝑝𝑟 = 1. Hence, for matrix 𝐿 + 𝑃, we have  

|𝑙𝑖𝑖 + 𝑝𝑖| = |𝑙𝑖𝑖| + |𝑝𝑖| ≥ ∑ |𝑙𝑖𝑗|𝑁
𝑗=1,𝑗≠𝑖 . (21) 

By Lemma 1, all the eigenvalues of 𝐿 + 𝑃 are located in 
the union of 𝑁 disks 

⋃ {𝜆 ∈ ℂ||𝜆 − 𝑙𝑖𝑖 − 𝑝𝑖| ≤ ∑ |𝑙𝑖𝑗|𝑁
𝑗=1,𝑗≠𝑖 }𝑁

𝑖=1 . (22) 

Then, the range of all the eigenvalues of 𝐿 + 𝑃 lies in the 
disk 

{𝜆 ∈ ℂ||𝜆 − max(𝑙𝑖𝑖 + 𝑝𝑖)| ≤ max(𝑙𝑖𝑖 + 𝑝𝑖)}. (23) 

Hence, all the eigenvalues of 𝐿 + 𝑃 lie within the union 

{𝜆 ∈ ℂ|Re(𝜆) > 0 ∪ {0}}. (24) 

In addition, inequality (21) holds strictly at least for 
vehicle 𝑟 , which is pinned to the leader, i.e.  𝑝𝑟 = 1 . 
Considering the spanning tree assumption, for any vehicle i, 
which does not have a direct connection to the leader, there 
must be a direct path connecting vehicle 𝑟  and vehicle i. 
Therefore, 𝐿 + 𝑃  is nonsingular according to Lemma 2, 
which implies that all the eigenvalues of 𝐿 + 𝑃 are located in 

the open right-half plane by combining (24), i.e. Re(𝜆𝑖(𝐿 +

𝑃 )) > 0, 𝑖 = 1,2, … , 𝑁. 

To prove Theorem 1.2, note that 𝐿 under assumption (a) 
is a lower triangular matrix, and 𝑃 is a diagonal matrix, so 
𝐿 + 𝑃 is always a lower triangular matrix, which implies that 
all the eigenvalues of 𝐿 + 𝑃 are real, i.e.  

𝜆𝑖(𝐿 + 𝑃 ) = 𝑙𝑖𝑖 + 𝑝𝑖 , 𝑖 = 1,2, ⋯ , 𝑁 (25) 

Meanwhile, 𝐿 under assumption (b) or assumption (c) is a 
symmetric matrix, and hence 𝐿 + 𝑃 is also symmetric, which 
implies that all the eigenvalues of 𝐿 + 𝑃 are real, i.e. 𝜆𝑖(𝐿 +
𝑃 ) = Re(𝜆𝑖(𝐿 + 𝑃 )), 𝑖 = 1,2, … , 𝑁. 

To prove Theorem 1.3, we know that all the eigenvalues 
of 𝐿 + 𝑃 are positive real, by combining the results in the first 
two statements. According to Lemma 3, Platoon (16) is 
asymptotically stable if and only if the real parts of the 

eigenvalues of matrices 𝐴 − 𝜆𝑖𝐵𝑘𝑇 , 𝑖 = 1,2, ⋯ , 𝑁 are all 
negative. The characteristic polynomial of matrix 𝐴 − 𝜆𝑖𝐵𝑘𝑇 
is 

|𝑠𝐼 − (𝐴 − 𝜆𝑖𝐵𝑘𝑇)| = 𝑠3 +
𝜆𝑖𝑘3+1

𝜏
𝑠2 +

𝜆𝑖𝑘2

𝜏
𝑠 +

𝜆𝑖𝑘1

𝜏
. (26) 

The stability of (26) is studied using the Routh–Hurwitz 
stability criterion, shown in (27).  

s3 1
𝜆𝑖𝑘2

𝜏

s2
𝜆𝑖𝑘3 + 1

𝜏

𝜆𝑖𝑘1

𝜏

𝑠1
𝜆𝑖𝑘2(𝜆𝑖𝑘3 + 1) − 𝜆𝑖𝑘1𝜏

𝜏(𝜆𝑖𝑘3 + 1)

𝑠0
𝜆𝑖𝑘1

𝜏

 (27) 

Given the fact  𝜏 > 0, 𝜆𝑖 > 0, 𝑖 = 1,2, … , 𝑁 , (26) is 
asymptotically stable if and only if 

{

𝑘1 > 0

𝑘2 > 𝑘1𝜏 (𝜆𝑖𝑘3 + 1)⁄

𝑘3 > − 1 𝜆𝑖⁄
. (28) 

Thus, 𝐴 − 𝜆𝑖𝐵𝑘𝑇 , 𝑖 = 1,2, ⋯ , 𝑁are asymptotically stable, 
i.e. system (16) is asymptotically stable if and only if (19) are 
satisfied. ∎ 

Remark 1: For Theorem 1.1, similar results were 
established in [24][33][34]. The proof in [33] relies on the 

fact that 𝐿 + 𝑃  is irreducible when graph  𝐺̃  contains a 
spanning tree. The technique used in this paper is similar to 
[34].  

Remark 2: In a platoon, if vehicle acceleration is 
inaccessible, i.e. 𝑘3 = 0, then Platoon (16) is asymptotically 
stable if and only if  

𝑘1 > 0, 𝑘2 > 𝑘1𝜏. (29) 
Earlier development of platoons is radar-based, which 

lacks acceleration information of other vehicles. In such cases, 
as long as 𝑘1, 𝑘2 satisfy (29), the closed-loop stability of the 
platoon can be guaranteed. 

Remark 3: The conclusion (29) is consistent with 
[17][18]. In [17] and [18], similar results were obtained using 
partial differential equation approximation, which is only 
suitable for platoons with bidirectional and 
bidirectional-leader topologies.  The proof here extends their 
results and is suitable for a large class of information flow 
topologies as long as they satisfy conditions (a), (b) and (c) in 
Theorem 1. The conditions cover all aforementioned 
topologies in Fig. 1 

IV. SIMULATION RESULTS 

Numerical simulations are conducted to validate the main 
result. We consider a homogeneous platoon with 11 identical 
vehicles (1 leader and 10 followers) interconnected by the six 
information flow topologies shown in Fig. 1 The acceleration 
or deceleration of the leader can be viewed as disturbances in 
a platoon. The initial state of the leader is set as 𝑠0(𝑡) =
0, 𝑣0 = 20 𝑚/𝑠 ,  and the desired trajectory is given by 

𝑣0 = {

20 𝑚/𝑠                𝑡 ≤ 5 𝑠
20 + 2𝑡   𝑚/𝑠    5𝑠 <  𝑡 ≤ 10 𝑠
30 𝑚/𝑠                 𝑡 > 10𝑠

 . 

2098



  

The eigenvalues of associated matrix 𝐿 + 𝑃 for these six 
information flow topologies are listed in TABLE I. All the 
eigenvalues are positive real, which is consistent with 
Theorems 1.1 and 1.2. 

TABLE I.  EIGENVALUES FOR 𝐿 + 𝑃 OF DIFFERENT INFORMATION FOW 

TOPOLOGIES IN FIG. 1 (𝑁 =  10) 

(a) 
PF 

(b) 
PLF 

(c) BD (d) BDL (e)TPF (f)TPLF 

1 1 0.0223 1.0000 1 1 

1 2 0.1981 1.0979 2 2 

1 2 0.5339 1.3820 2 3 

1 2 1.0000 1.8244 2 3 

1 2 1.5550 2.3820 2 3 

1 2 2.1495 3.0000 2 3 

1 2 2.7307 3.6180 2 3 

1 2 3.2470 4.1756 2 3 

1 2 3.6525 4.6180 2 3 

1 2 3.9111 4.9021 2 3 

 

 
(a)                                                         (b) 

 
  (c)                                                       (d) 

 
  (e)                                                       (f) 

Figure 2.  Performance of stable platoon when Theorem 1.3 is satisfied. (a): 

PF; (b): PLF; (c):BD; (d):BDL; (e): TPF; (f):TPLF 

 
  (a)                                                         (b) 

 
(c)                                                       (d) 

 
  (e)                                                       (f) 

Figure 3.  Performance of unstable platoon when Theorem 1.3 is dissatisfied. 

(a): PF; (b): PLF; (c):BD; (d):BDL; (e): TPF; (f):TPLF  

TABLE II.  PRAMETERS FOR THE PLATOON 

Parameters Scenario 1 Scenario 2 

𝜏 0.4 0.4 

𝑘1 1 1 
𝑘2 2 0.2 

𝑘3 1 1 
Theorem 1.3 Satisfied Dissatisfied 

 

In the simulations, the desired spacing is set as 𝑑𝑖−1,𝑖 =
20 𝑚 and the vehicle length is equal to 4 𝑚. The initial state 

of the platoon is set as the desired state, i.e. the initial spacing 

errors and velocity errors are all equal to 0. Two scenarios, i.e. 

stability and instability, have been simulated by considering 

two groups of specific parameters (see TABLE II. ). Fig. 2 

demonstrates spacing errors for different information flow 

topologies (i.e. Fig. 1 (a)-(f)) in Scenario 1, whose parameters 

are listed in TABLE II. As the parameters in Scenario 1 
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satisfy the closed-loop stability condition (19), i.e. 

Theorem1.3 holds, the motion of the vehicles is stable for all 

the information topologies. On the other hand, the parameters 

in Scenario 2 do not satisfy the stability condition (19), so 

instability occurs. Considering this fact, Fig. 3 shows the 

instability of the platoon.  

V. CONCLUSIONS 

This paper studies the influence of information flow 
topology on the closed-loop stability of homogeneous 
vehicular platoons moving in a rigid formation. Using the 
exact feedback linearization, a linearized vehicle longitudinal 
dynamic model is derived which takes into account the 
inertial delay of powertrain dynamics. Directed graph 
topologies are employed to model allowable information flow 
among vehicles, both radar-based and communication-based. 
Linear distributed controllers are designed, leading to platoon 
closed-loop dynamics under the constant distance policy. The 
main result explicitly derives the closed-loop stability 
conditions for platoons with a large class of information flow 
topologies. Some open questions are worth investigation in 
this field: (1) the unified closed-loop stability theorem of 
heterogeneous platoons with non-identical controllers; (2) the 
unified string stability theorem of platoons under different 
types of information flow topologies. 
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